
THE SCHWARZIAN DERIVATIVE

KEATON QUINN

If we identify CP1 with the Riemann sphere, then in a coordinate z, the action
of SL2C on CP1 is given by (

a b
c d

)
· z =

az + b

cz + d
.

But notice that M · z = (−M) · z. So to get a faithful action we quotient by the
normal subgroup {±Id}, obtaining the group PSL2C = SL2C/{±Id}.
Lemma. Suppose Ω is an open connected subset of CP1 and f : Ω → CP1 is a
locally injective holomorphic function. Given z ∈ Ω, there exists a unique Möbius
transformation Mf (z) ∈ PSL2C that agrees with f at z to 2nd order, i.e.,

f(w) = Mf (z) · w + o(w − z)2.

Another way to say this is that for fixed z ∈ Ω,

Mf (z) · z = f(z),

d

dw
(Mf (z) · w)|w=z = f ′(z),

d2

dw2
(Mf (z) · w)|w=z = f ′′(z).

The assignment z 7→ Mf (z) defines a map Mf : Ω → PSL2C that is called the
Osculating Möbius Transformation of f . If neither z nor f(z) is infinity, then the
osculating Möbius transformation is given by

Mf (z) · w =
(f ′(z)2 − 1

2f(z)f ′′(z))(w − z) + f(z)f ′(z)

− 1
2f
′′(z)(w − z) + f ′(z)

so that

Mf (z) =
1

f ′(z)3/2

(
f ′(z)2 − 1

2f(z)f ′′(z) −(f ′(z)2 − 1
2f(z)f ′′(z))z + f(z)f ′(z)

− 1
2f
′′(z) f ′(z) + 1

2zf
′′(z)

)
.

Note that the ambiguity of the f ′(z)3/2 is taken care of by the quotient to PSL2C.
If f is already a Möbius transformation then Mf (z) = f for all z ∈ Ω. Indeed,

Mf : Ω→ PSL2C is constant if and only if f is a Möbius transformation. Therefore,
the derivative of the osculating Möbius transformation should give some measure
of how far the function f is from being a Möbius transformation.

The differential dMf : TΩ → TPSL2C takes values in the tangent bundle of
PSL2C. The tangent bundle of a Lie group is canonically trivialized by left trans-
lation:

TPSL2C ' PSL2C× Lie(PSL2C) = PSL2C× sl2C
(M,v) 7→ (M,d(LM−1)M (v)) = (M,M−1v).
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So composing dMf with the projection to sl2C we can consider the Darboux de-
rivative of f : a 1-form on Ω with values in sl2C. See [Sha97, Chapter 3] for a
discussion of Darboux derivatives. An explicit computation gives

Mf (z)−1d(Mf )z =
1

2

((
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2
)(
−z z2

−1 z

)
dz.

So we see that Darboux derivative is zero precisely when the quantity

S(f)(z) =

((
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2
)

= 0,

and so f is a Möbius transformation precisely when S(f) = 0. We call S(f) the
Schwarzian derivative of f .

The Schwarzian derivative has an interesting chain rule: if f and g are locally
injective and holomorphic then a computation shows

S(f ◦ g) = (S(f) ◦ g)(g′)2 + S(g).

This suggests that the Schwarzian is more naturally a quadratic differential; that
we should redefine

S(f)(z) =

((
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2
)
dz2

so that the chain rule can be written more cleanly as

S(f ◦ g) = g∗S(f) + S(g).

However, this new definition is not well behaved under a change of coordinates.
Say we have a Riemann surface X and a holomorphic map f : X → C. We could
try to define the Schwarzian of f in charts and pull it back to X. That is, suppose
z : U → C is a coordinate chart, we could try to define S(f) on U by z∗S(f ◦ z−1).
To check if this can be globally defined, take another chart w overlapping with z.
Then we have

z∗S(f ◦ z−1) = z∗S(f ◦ w−1 ◦ (w ◦ z−1))

= z∗((w ◦ z−1)∗S(f ◦ w−1) + S(w ◦ z−1))

= w∗S(f ◦ w−1) + z∗S(w ◦ z−1).

So we see we can only patch together the Schwarzian if S(w ◦ z−1) = 0 for all
holomorphic charts on X. That is, only when all the transition functions are
Möbius transformations. This leads us to the definition of a Complex Projective
Structure.

Definition. Let S be a smooth surface. A complex projective structure Z on S is
an atlas of charts to CP1 such that all the transition functions are (the restrictions
of) Möbius transformations. We refer to S with Z as a complex projective surface.

Notice that since Möbius transformations are holomorphic, a complex projective
structure Z induces a complex structure X on S. Like in the smooth manifolds case,
we call a function between two complex projective surfaces f : Z → W projective
if it is (the restriction of) Möbius transformations in all projective charts of Z and
W . Again, since Möbius transformations are holomorphic, projective maps between
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complex projective surfaces are holomorphic with respect to the underlying complex
structures.

Suppose f : Z →W . We can define the Schwarzian derivative of f as a quadratic
differential on Z. If f is locally injective, then f ′(z) 6= 0 for any z and so the
Schwarzian of f is holomorphic with respect to Z’s underlying complex structure.
If f is not locally injective, then we have f ′(z) = 0 somewhere, in which case the
Schwarzian is a meromorphic quadratic differential. Now, to define the Schwarzian,
take projective charts z for Z and w for W and locally define it by z∗S(w ◦f ◦z−1).
Like before, one can check that these local tensors patch together to give a global
object on Z. We also still have that f is projective if and only if S(f) = 0.

Now let X be a Riemann surface and let P(X) be the set of all complex projective
structures that have underlying complex structure X (up to isotopy). We can use
the Schwarzian derivative to measure the ’difference between Z,W ∈ P(X). To do
this, note that the identity is a map Id : Z →W and define

Z −W = S(Id) ∈ Q(X).

This is actually a good measure of the difference because in charts we have S(Id) =
z∗S(w ◦ z−1). So S(Id) is measuring the projective compatibility between the pro-
jective atlas for Z and the projective atlas for W . If we fix a basepoint Z0 ∈ P(X),
we can define an isomorphism P(X)→ Q(X) by sending Z 7→ Z−Z0. Hence P(X)
is an affine space modeled on the vector space Q(X).

The viewpoint taken here is due to Thurston (see [Thu86]). See also [And98] and
[Dum09] for further discussion.
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