THE SCHWARZIAN DERIVATIVE

KEATON QUINN

If we identify CP! with the Riemann sphere, then in a coordinate z, the action
of SLyC on CP! is given by
a b _az+b
<C d) [

But notice that M - z = (—=M) - z. So to get a faithful action we quotient by the
normal subgroup {£Id}, obtaining the group PSLoC = SL,C/{+£Id}.

Lemma. Suppose Q) is an open connected subset of CP' and f : Q@ — CP! is a
locally injective holomorphic function. Given z € (Q, there exists a unique Mobius
transformation My (z) € PSLoC that agrees with f at z to 2nd order, i.e.,

F(w) = My(2) - w+ ofw — 2)%
Another way to say this is that for fixed z € €2,
My(z) -z = f(2),

LMy (2) 0l = SC2)
A ). = £2).

The assignment z — My (z) defines a map My : Q@ — PSLoC that is called the
Osculating Mobius Transformation of f. If neither z nor f(z) is infinity, then the
osculating M&bius transformation is given by

(f'(2)° = 3/ ()f"(2))(w — 2) + f(2)f'(2)

S 6 TS R
so that
L1 (PEP-MEME) —(FEP - @)+ FE)
re = e (77 570 7+ 421 (2) )

Note that the ambiguity of the f’(2)3/? is taken care of by the quotient to PSLyC.

If f is already a Mobius transformation then M;(z) = f for all z € . Indeed,
My : 0 — PSLyC is constant if and only if f is a Mobius transformation. Therefore,
the derivative of the osculating Mobius transformation should give some measure
of how far the function f is from being a Mobius transformation.

The differential dM; : TQ) — TPSL,C takes values in the tangent bundle of
PSL,C. The tangent bundle of a Lie group is canonically trivialized by left trans-
lation:

TPSL,C ~ PSL,C x Lie(PSLyC) = PSLyC x slyC
(M,U) = (Ma d(LM—l)M<U)) = (MaMilv)'
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So composing dM; with the projection to slC we can consider the Darboux de-
rivative of f: a l-form on  with values in sloC. See [Sha97, Chapter 3] for a
discussion of Darboux derivatives. An explicit computation gives

w3 ((59) 4 (5)) (G )

So we see that Darboux derivative is zero precisely when the quantity

f”(Z))/ 1 (f”(Z))2

S = - = =0,

e (( 7o) 2\

and so f is a Mobius transformation precisely when S(f) = 0. We call S(f) the
Schwarzian derivative of f.

The Schwarzian derivative has an interesting chain rule: if f and g are locally
injective and holomorphic then a computation shows

S(fog)=(S(f)og)g)?+S(g).

This suggests that the Schwarzian is more naturally a quadratic differential; that

we should redefine
s () -4 (7))

so that the chain rule can be written more cleanly as

S(fog)=g"S(f)+S(9).

However, this new definition is not well behaved under a change of coordinates.
Say we have a Riemann surface X and a holomorphic map f: X — C. We could
try to define the Schwarzian of f in charts and pull it back to X. That is, suppose
z: U — C is a coordinate chart, we could try to define S(f) on U by 2*S(foz71).
To check if this can be globally defined, take another chart w overlapping with z.
Then we have

ZS8(for ) =2"S(fow o(wozT))
=2"(woz H*S(fow™ )+ S(woz1))
=w*S(f o w ) + z*S(wo 2 1.

So we see we can only patch together the Schwarzian if S(w o 271) = 0 for all
holomorphic charts on X. That is, only when all the transition functions are
Mobius transformations. This leads us to the definition of a Complex Projective
Structure.

Definition. Let S be a smooth surface. A complex projective structure Z on S is
an atlas of charts to CP! such that all the transition functions are (the restrictions
of ) Mébius transformations. We refer to S with Z as a complex projective surface.

Notice that since Mobius transformations are holomorphic, a complex projective
structure Z induces a complex structure X on S. Like in the smooth manifolds case,
we call a function between two complex projective surfaces f : Z — W projective
if it is (the restriction of) Md&bius transformations in all projective charts of Z and
W. Again, since M&bius transformations are holomorphic, projective maps between
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complex projective surfaces are holomorphic with respect to the underlying complex
structures.

Suppose f : Z — W. We can define the Schwarzian derivative of f as a quadratic
differential on Z. If f is locally injective, then f’(z) # 0 for any z and so the
Schwarzian of f is holomorphic with respect to Z’s underlying complex structure.
If f is not locally injective, then we have f’(z) = 0 somewhere, in which case the
Schwarzian is a meromorphic quadratic differential. Now, to define the Schwarzian,
take projective charts z for Z and w for W and locally define it by z*S(wo foz™1).
Like before, one can check that these local tensors patch together to give a global
object on Z. We also still have that f is projective if and only if S(f) = 0.

Now let X be a Riemann surface and let P(X) be the set of all complex projective
structures that have underlying complex structure X (up to isotopy). We can use
the Schwarzian derivative to measure the ’difference between Z, W € P(X). To do
this, note that the identity is a map Id : Z — W and define

Z—W =5(Id) € Q(X).

This is actually a good measure of the difference because in charts we have S(Id) =
2*S(woz™1). So S(Id) is measuring the projective compatibility between the pro-
jective atlas for Z and the projective atlas for W. If we fix a basepoint Z € P(X),
we can define an isomorphism P(X) — Q(X) by sending Z — Z — Z,. Hence P(X)
is an affine space modeled on the vector space Q(X).

The viewpoint taken here is due to Thurston (see [Thu86]). See also [And98] and
[Dum09] for further discussion.
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